главная>>методики>>метод дендограмм

Проект осуществляется при поддержке РГНФ

Объединение
(древовидная кластеризация, метод дендограмм)

Общая логика

Приведенный в разделе Основная цель пример поясняет цель алгоритма объединения (древовидной кластеризации). Назначение этого алгоритма состоит в объединении объектов (например, животных) в достаточно большие кластеры, используя некоторую меру сходства или расстояние между объектами. Типичным результатом такой кластеризации является иерархическое дерево.

  Иерархическое дерево

Рассмотрим горизонтальную древовидную диаграмму. Диаграмма начинается с каждого объекта в классе (в левой части диаграммы). Теперь представим себе, что постепенно (очень малыми шагами) вы "ослабляете" ваш критерий о том, какие объекты являются уникальными, а какие нет. Другими словами, вы понижаете порог, относящийся к решению об объединении двух или более объектов в один кластер.

В результате, вы связываете вместе всё большее и большее число объектов и агрегируете (объединяете) все больше и больше кластеров, состоящих из все сильнее различающихся элементов. Окончательно, на последнем шаге все объекты объединяются вместе. На этих диаграммах горизонтальные оси представляют расстояние объединения (в вертикальных древовидных диаграммах вертикальные оси представляют расстояние объединения). Так, для каждого узла в графе (там, где формируется новый кластер) вы можете видеть величину расстояния, для которого соответствующие элементы связываются в новый единственный кластер. Когда данные имеют ясную "структуру" в терминах кластеров объектов, сходных между собой, тогда эта структура, скорее всего, должна быть отражена в иерархическом дереве различными ветвями. В результате успешного анализа методом объединения появляется возможность обнаружить кластеры (ветви) и интерпретировать их.

Меры расстояния

Объединение или метод древовидной кластеризации используется при формировании кластеров несходства или расстояния между объектами. Эти расстояния могут определяться в одномерном или многомерном пространстве. Например, если вы должны кластеризовать типы еды в кафе, то можете принять во внимание количество содержащихся в ней калорий, цену, субъективную оценку вкуса и т.д. Наиболее прямой путь вычисления расстояний между объектами в многомерном пространстве состоит в вычислении евклидовых расстояний. Если вы имеете двух- или трёхмерное пространство, то эта мера является реальным геометрическим расстоянием между объектами в пространстве (как будто расстояния между объектами измерены рулеткой). Однако алгоритм объединения не "заботится" о том, являются ли "предоставленные" для этого расстояния настоящими или некоторыми другими производными мерами расстояния, что более значимо для исследователя; и задачей исследователей является подобрать правильный метод для специфических применений.

Евклидово расстояние. Это, по-видимому, наиболее общий тип расстояния. Оно попросту является геометрическим расстоянием в многомерном пространстве и вычисляется следующим образом:

расстояние(x,y) = {i (xi - yi)2 }1/2

Заметим, что евклидово расстояние (и его квадрат) вычисляется по исходным, а не по стандартизованным данным. Это обычный способ его вычисления, который имеет определенные преимущества (например, расстояние между двумя объектами не изменяется при введении в анализ нового объекта, который может оказаться выбросом). Тем не менее, на расстояния могут сильно влиять различия между осями, по координатам которых вычисляются эти расстояния. К примеру, если одна из осей измерена в сантиметрах, а вы потом переведете ее в миллиметры (умножая значения на 10), то окончательное евклидово расстояние (или квадрат евклидова расстояния), вычисляемое по координатам, сильно изменится, и, как следствие, результаты кластерного анализа могут сильно отличаться от предыдущих.

Расстояние Чебышева. Это расстояние может оказаться полезным, когда желают определить два объекта как "различные", если они различаются по какой-либо одной координате (каким-либо одним измерением). Расстояние Чебышева вычисляется по формуле:

расстояние(x,y) = Максимум|xi - yi|

Правила объединения или связи

На первом шаге, когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Однако когда связываются вместе несколько объектов, возникает вопрос, как следует определить расстояния между кластерами? Другими словами, необходимо правило объединения или связи для двух кластеров. Здесь имеются различные возможности: например, вы можете связать два кластера вместе, когда любые два объекта в двух кластерах ближе друг к другу, чем соответствующее расстояние связи. Другими словами, вы используете "правило ближайшего соседа" для определения расстояния между кластерами; этот метод называется методом одиночной связи. Это правило строит "волокнистые" кластеры, т.е. кластеры, "сцепленные вместе" только отдельными элементами, случайно оказавшимися ближе остальных друг к другу. Как альтернативу вы можете использовать соседей в кластерах, которые находятся дальше всех остальных пар объектов друг от друга. Этот метод называется метод полной связи. Существует также множество других методов объединения кластеров, подобных тем, что были рассмотрены.

Одиночная связь (метод ближайшего соседа). Как было описано выше, в этом методе расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Это правило должно, в известном смысле, нанизывать объекты вместе для формирования кластеров, и результирующие кластеры имеют тенденцию быть представленными длинными "цепочками".

Полная связь (метод наиболее удаленных соседей). В этом методе расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Этот метод обычно работает очень хорошо, когда объекты происходят на самом деле из реально различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод непригоден.

На первом этапе исследования было сделано предположение, что инвариантом может являться распределение частей речи на первых трех и последних трех позициях предложений. Таким образом, при помощи специальных подпрограмм из базы данных произведений для каждой статьи были получены частотные таблицы частей речи для указанных 6 позиций предложения. Модуль "Грамматический анализ" позволяет выявлять 16 частей речи, поэтому каждая статья в этом исследовании имеет 96 признаков (6 позиций по 16 признаков). Кроме того, решено было проверить по данной методике не только каждое предложение текста, но и провести подобные расчеты для первого и последнего предложения каждого абзаца, а также по отдельности для каждого первого и каждого последнего предложения абзаца. 

То же самое было сделано и для расширенного набора признаков: каждое предложение текста, первое и последнее предложения каждого абзаца, каждое первое и каждое последнее предложения абзаца.

Расшифровка нумерации объектов.

smalt@karelia.ru Добавить в избранное